计算表型可以无监督发现患者的亚组以及电子健康记录(EHR)的相应同时发生的医疗状况。通常,EHR数据包含人口统计信息,诊断和实验室结果。发现(新颖的)表型具有预后和治疗价值的潜力。为医生提供透明且可解释的结果是一项重要要求,也是推进精确医学的重要组成部分。低级别数据近似方法,例如矩阵(例如,非负矩阵分解)和张量分解(例如,candecomp/parafac),已经证明它们可以提供这种透明且可解释的见解。最近的发展通过合并不同的限制和正规化来促进可解释性,从而适应了低级数据近似方法。此外,它们还为EHR数据中的共同挑战提供解决方案,例如高维度,数据稀疏性和不完整性。尤其是从纵向EHR中提取时间表型,近年来引起了很多关注。在本文中,我们对计算表型的低级别近似方法进行了全面的综述。现有文献根据矩阵与张量分解归类为时间与静态表型方法。此外,我们概述了验证表型的不同方法,即评估临床意义。
translated by 谷歌翻译
在数据挖掘,神经科学和化学计量学在内的各个领域,分析各种数据集中的多路测量结果是一个挑战。例如,测量可能会随着时间的流逝而发展或具有不一致的时间曲线。 PARAFAC2模型已成功地用于分析此类数据,通过在一种模式(即演变模式)下允许基础因子矩阵跨切片进行更改。拟合PARAFAC2模型的传统方法是使用基于最小二乘的交替算法,该算法通过隐式估计不断发展的因子矩阵来处理Parafac2模型的恒定交叉产生约束。这种方法使对这些因素矩阵充满挑战。目前尚无算法可以灵活地将这种正规化施加,并具有一般的惩罚功能和硬性约束。为了应对这一挑战并避免隐性估计,在本文中,我们提出了一种算法,用于拟合PARAFAC2基于与乘数交替方向方法(AO-ADMM)的交替优化拟合parafac2。通过在模拟数据上进行数值实验,我们表明所提出的PARAFAC2 AO-ADMM方法允许灵活约束,准确地恢复了基础模式,并且与先进的ART相比,计算有效。我们还将模型应用于神经科学和化学计量学的两个现实世界数据集,并表明限制发展模式可改善提取模式的解释性。
translated by 谷歌翻译
因果发现是一项主要任务,对于机器学习至关重要,因为因果结构可以使模型超越基于纯粹的相关推理并显着提高其性能。但是,从数据中找到因果结构在计算工作和准确性方面都构成了重大挑战,更不用说在没有干预的情况下不可能。在本文中,我们开发了一种元强化学习算法,该算法通过学习执行干预措施以构建明确的因果图来执行因果发现。除了对可能的下游应用程序有用外,估计的因果图还为数据生成过程提供了解释。在本文中,我们表明我们的算法估计了与SOTA方法相比,即使在以前从未见过的基本因果结构的环境中也是如此。此外,我们进行了一项消融研究,展示了学习干预措施如何有助于我们方法的整体表现。我们得出的结论是,干预措施确实有助于提高性能,从而有效地对可能看不见的环境的因果结构进行了准确的估计。
translated by 谷歌翻译
越来越多的人期望在对象属性具有高感知不确定性的越来越多的非结构化环境中操纵对象。这直接影响成功的对象操纵。在这项工作中,我们提出了一个基于增强的学习动作计划框架,用于对象操纵,该框架既利用了在现有的多感觉反馈,也可以使用学习的注意力引导的深层负担能力模型作为感知状态。可承受的模型是从多种感官方式中学到的,包括视觉和触摸(触觉和力/扭矩),旨在预测和指示具有相似外观的物体的多个负担能力(即抓地力和推动力)的可操作区域属性(例如,质量分布)。然后,对基于DQN的深钢筋学习算法进行培训,以选择成功对象操纵的最佳动作。为了验证提出的框架的性能,使用开放数据集和收集的数据集对我们的方法进行评估和基准测试。结果表明,所提出的方法和整体框架的表现优于现有方法,并实现更好的准确性和更高的效率。
translated by 谷歌翻译
我们为通过异质网络提供了一种新颖的培训配方,用于联合学习,每个设备都可以具有不同的体系结构。我们介绍了培训,并以较高复杂性的设备为附带目标,以在联合环境中共同培训不同的体系结构。我们从经验上表明,与最先进的方法相比,我们的方法改善了不同架构的性能,并导致沟通节省高。
translated by 谷歌翻译
联合学习(FL)是一种分布式机器学习技术,可以在避免明确的数据共享的同时进行协作模型培训。 FL算法的固有保护属性使其对医疗领域特别有吸引力。但是,如果有异质的客户数据分布,则标准FL方法是不稳定的,需要密集的超参数调整以实现最佳性能。常规的超参数优化算法在现实世界中的FL应用中是不切实际的,因为它们涉及大量的培训试验,而计算预算有限,这些试验通常是不起作用的。在这项工作中,我们提出了一种有效的增强学习(RL)的联合次数超参数优化算法,称为自动FEDRL,其中在线RL代理可以根据当前的培训进度动态调整每个客户的超参数。进行了广泛的实验以研究不同的搜索策略和RL代理。该方法的有效性在CIFAR-10数据集的异质数据分配以及两个现实世界中的医学图像分割数据集上进行了验证,用于胸部CT中的COVID-19变病变分段,腹部CT中的胰腺细分。
translated by 谷歌翻译
我们提出了一种用于分布式培训神经网络模型的新型联合学习方法,其中服务器在每轮中随机选择的设备的子集之间编制协作。我们主要从通信角度查看联合学习问题,并允许更多设备级别计算来节省传输成本。我们指出了一个基本的困境,因为当地 - 设备水平的最低实证损失与全球经验损失的最小值不一致。与最近的事先有关的不同,尝试无所作用的最小化或利用用于并行化梯度计算的设备,我们为每轮的每个设备提出动态规范器,以便在极限中,全局和设备解决方案对齐。我们通过实证结果对真实的和合成数据以及我们的方案在凸和非凸面设置中导致有效培训的分析结果,同时对设备异质性完全不可知,以及大量设备,部分参与和不平衡的数据。
translated by 谷歌翻译
近似任意凸起函数的任务是在诸如凸起回归的几个学习问题中,学习具有凸(DC)功能的差异,以及近似Bregman分歧。在本文中,我们展示了如何通过2块ADMM方法来解决广泛的凸函数学习问题,其中每个块的更新可以以封闭的形式计算。对于Convex Lipschitz回归的任务,我们建立了我们所提出的算法以$ o(n ^ 3 d ^ {1.5} + n ^ 2 d ^ {2.5} + nd ^ 3)$ for tata r x $ x \在r ^ {n \ times d} $。如果$ d = o(n ^ 4)$。此外,我们提供了类似的DC回归和Bregman发散学习的求解器。与以前的方法不同,我们的方法适用于GPU。我们展示了回归和度量学习实验,即我们的方法比现有方法快20倍,并产生与最先进的结果相当的结果。
translated by 谷歌翻译